Coupled Mode Equations and Gap Solitons for the 2D Gross-Pitaevskii equation with a non-separable periodic potential

نویسندگان

  • Tomáš Dohnal
  • Hannes Uecker
چکیده

Gap solitons near a band edge of a spatially periodic nonlinear PDE can be formally approximated by solutions of Coupled Mode Equations (CMEs). Here we study this approximation for the case of the 2D Periodic Nonlinear Schrödinger / Gross-Pitaevskii Equation with a non-separable potential of finite contrast. We show that unlike in the case of separable potentials [T. Dohnal, D. Pelinovsky, and G. Schneider, J. Nonlin. Sci. (2008), online] the CME derivation has to be carried out in Bloch rather than physical coordinates. Using the Lyapunov-Schmidt reduction we then give a rigorous justification of the CMEs as an asymptotic model for reversible non-degenerate gap solitons and provide H estimates for this approximation. The results are confirmed by numerical examples including some new families of CMEs and gap solitons absent for separable potentials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled Mode Equations and Gap Solitons for the 2D Gross-Pitaevsky equation with a non-separable periodic potential

Gap solitons near a band edge of a spatially periodic nonlinear PDE can be formally approximated by solutions of Coupled Mode Equations (CMEs). Here we study this approximation for the case of the 2D Periodic Nonlinear Schrödinger / Gross-Pitaevsky Equation with a non-separable potential of finite contrast. We show that unlike in the case of separable potentials [T. Dohnal, D. Pelinovsky, and G...

متن کامل

Coupled-Mode Equations and Gap Solitons in a Two-Dimensional Nonlinear Elliptic Problem with a Separable Periodic Potential

We address a two-dimensional nonlinear elliptic problem with a finite-amplitude periodic potential. For a class of separable symmetric potentials, we study the bifurcation of the first band gap in the spectrum of the linear Schrödinger operator and the relevant coupled-mode equations to describe this bifurcation. The coupled-mode equations are derived by the rigorous analysis based on the Fouri...

متن کامل

Moving gap solitons in periodic potentials

We address existence of moving gap solitons (traveling localized solutions) in the Gross-Pitaevskii equation with a small periodic potential. Moving gap solitons are approximated by the explicit localized solutions of the coupled-mode system. We show however that exponentially decaying traveling solutions of the Gross-Pitaevskii equation do not generally exist in the presence of a periodic pote...

متن کامل

Bifurcation of Nonlinear Bloch Waves from the Spectrum in the Gross-Pitaevskii Equation

We rigorously analyze the bifurcation of so called nonlinear Bloch waves (NLBs) from the spectrum in the Gross-Pitaevskii (GP) equation with a periodic potential, in arbitrary space dimensions. These are solutions which can be expressed as finite sums of quasi-periodic functions, and which in a formal asymptotic expansion are obtained from solutions of the so called algebraic coupled mode equat...

متن کامل

Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential

Coupled-mode systems are used in physical literature to simplify the nonlinear Maxwell and Gross-Pitaevskii equations with a small periodic potential and to approximate localized solutions called gap solitons by analytical expressions involving hyperbolic functions. We justify the use of the one-dimensional stationary coupled-mode system for a relevant elliptic problem by employing the method o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008